
Market analysis with mergersim 2

(Preliminary and incomplete)∗

Jonas Björnerstedt and Frank Verboven

February 8, 2015

Abstract

In Björnerstedt & Verboven (2014) an implementation of merger sim-
ulation with the Stata package mergersim was introduced. In this paper
extensions to the package are presented, implemented in the package merg-
ersim2. The package mergersim2 implements more demand speci�cations,
including three level nests and nest speci�c parameters in the nested logit,
and the PCAIDS demand model of Epstein & Rubinfeld. Demand can be
calibrated from a speci�cation of demand elasticities. It also extends the
merger analysis to include partial ownership and more general speci�ca-
tions of �rm conduct. In addition upward pricing pressure (UPP) can be
calculated as well as SSNIP tests. The package has also been extended to
better allow for other kinds of market analysis.

Björnerstedt & Verboven (2014) introduced a Stata package, mergersim, to
facilitate the quantative analysis of mergers using merger simulation methods.
Other kinds of market analysis, relevant in competition policy analysis were not
addressed by the program, however. With the development of mergersim2, the
package now incorporates a new set of tools for market analysis. The purpose of
this document is to show how the new features can be used, and to provide the
underlying analysis. It is intended to be read in conjunction with Björnerstedt
& Verboven (2014), which explains the basic functionality of mergersim.

The primary goal of mergersim was to create a platform for merger sim-
ulation. As demand analysis and the tools in the program could be used for
other problems in market analysis in general and competition policy in particu-
lar, mergersim2 incorporates many changes in this direction. The new features
focus on the analysis market power, pricing and extending the set of demand
models of mergersim. There is also a more complicated example includet, that
illustrates handling of uncertainty with a parametric bootstrap in the setting of
merger simulations.

The new features of mergersim2 are presented in the next section. The
following section contain presentation of the analysis and derivations used in

∗Updated versions of the documentation are available at: www.bjornersted.org/stata/

mergersim2/new_features.pdf.

1

these features. Sections 2 and 3 show how upward pricing pressure and SSNIP-
tests are calculated in a multi-product setting. Analysis of demand with joint
ownership is presented in section 4. The appendices document the derivations
of three level nested logit demand, and the matrix algebra used for the share
jacobian in merger simulation.

1 Using mergersim 2

The new features of mergersim2 are implemented in the framework of the previ-
ous version of the program, using new subcomands and new options to existing
subcommands. It is an extension of mergersim, with complete backwards com-
patibility.

1.1 Program Status

The new version of mergersim is nearing completion. Currently there are a few
new features that have not been completed. Updated versions can be installed
as indicated below, and the latest version of the documentation is available at:
www.bjornersted.org/stata/mergersim2/new_features.pdf.

1.2 Installation

The new program mergersim2 is implemented as a new version of mergersim,
documented in Björnerstedt & Verboven (2014). Due to limitations of Stata,
both programs cannot be installed on the same computer1. To install merger-
sim2, the following commands are executed in Stata:

net from http://www.bjornerstedt.org/stata/mergersim2

net install mergersim

Once installed, mergersim2 is updated with the Stata command:

adoupdate, update

1.3 Example market

Examples will be based on the example dataset of automobile sales in Europe
cars1.dta, included with mergersim. The mergersim initialization and estima-
tion commands will be the same for all examples. For expositional purposes we
have chosen not to discuss questions of endogeneity of prices and group shares,
using the Stata command xtreg. In any real application the usere must of
course handle these issues properly, using for example xtivreg instead.

1If a previous version of mergersim has been installed, it can be removed before installing
mergersim2 with the Stata command ado uninstall mergersim.

2

Figure 1: UPP results

mergersim init, nests(segment domestic) price(price) ///

quantity(qu) marketsize(MSIZE) firm(firm)

xtreg M_ls price M_lsjh M_lshg horsepower fuel width height domestic ///

year country2-country5, fe

Market analysis and simulation will in all cases be on the year 2008, in Germary
(country 3). For example mergersim market is constrained to this market by
the command:

mergersim market if year == 1998 & country == 3

1.4 UPP and Consumer Surplus

When performing a merger simulation with mergersim2, the Upward Pricing
Pressure (UPP) can be also be calculated, using the upp option to mergersim

simulate. With the command

mergersim simulate if year == 1998 & country == 3 , ///

seller(15) buyer(26) detail upp

The output of mergersim simulate is given by Figure 7. Note that in the
current version the absolute price change is reported in the table, not percentage
changes.

The detail option speci�es that market shares before and after the merger
are also displayed. In addition, the Her�ndahl (HHI), C4 and C8 concentration
ideces are included. With mergersim2 the consumer and producer surplus are
also included in this detailed output, as shown in Figure 2.

The code used can be found in example2.do.

1.5 Market analysis

Simulation of market outcomes can be of importance in many other contexts,
however. Changes in product characteristics or marginal costs, for example by
the imposition of a sales tax. In the context of competition policy, one can wish

3

Figure 2: Concentration indeces and surplus

to study for exampel abuse of dominance in analyzing to what extent raising
rivals' costs increases sales and pro�ts of the dominant �rm.

Given a demand speci�cation, mergersim simulate can be used to study
the equilibrium e�ect of a change in market conditions. In mergersim2 the
options buyer() and seller() are now optional, only to be used if changes in
ownership are to be studied. The command mergersim simulate can be used
not only to study the e�ects of changes in ownership, but also the e�ects of for
instance

1. Changes in costs, using the newcosts() option

2. Changes in the property of products, such as horsepower, using the newdelta()
option

3. Introduction or removal of products

4. Changes in conduct, using the newconduct() option

We will illustrate the �rst three features, with a market simulation after both
cost and product changes, and with a �rm exiting the market.

The command mergersim market calculates various variables that can be
used in market analysis.

M_costs contains the marginal costs per product, calculated based on the
estimated demand and assumptions on market competition. They
are the costs that would result in observed prices and demand.

M_delta contains the average utility of each product in each market exclud-
ing the price e�ect. In the current example it includes the e�ect
of horsepower, fuel, width and height, as well as market speci�c
constants.

4

To generate these variables in the market to be studied, after initializing merg-
ersim and estimating demand as discussed above, the following command is
used:

mergersim market if year == 1998 & country == 3

To increase costs by 5%, a new variable is generated

gen costs2 = 1.05*M_costs

Similarly, we create a new variable for the new utility of each product. Here an
increase in horsepower of 50% for VW results in higher utility for these products.
It is a product of the following terms:

1. the increase in horsepower: horsepower*0.5

2. the estimated marginal e�ect of horsepower on utility: _b[horsepower]

3. a dummy for VW: (firm==26)

gen delta2 = M_delta + horsepower*0.5*_b[horsepower]*(firm==26)

Once these variables have been created, a market simulation can be performed

mergersim simulate if year == 1998 & country == 3 & firm != 4, ///

newdelta(delta2) newcosts(costs2)

By excluding �rm 4 from the simulation, Fiat exits the market. The new costs
and utility are included with the options on the second line of the command.
The results of the simulation are shown in Figure 3.

The code used can be found in example2.do.

1.6 SSNIP and Analysis of Demand

After estimating or specifying demand parameters, mergersim can perform a
SSNIP test. With costs calculated based on the market competition assumption,
the pro�tability of a price increase of a set of products can be evaluated. To
perform a SSNIP test of a 5 percent price increase, the following command is
used:

mergersim demand if year == 1998 & country == 3 , ssnip(0.05)

The resultant output is given in Figure 4.

1.6.1 Analysis of Demand

The estimated or speci�ed demand function can be studied with mergersim2.
With the mergersim demand command, one can study the non-equilibrium ef-
fect on demand of a set of prices. To see the e�ect of a 5 percent price increase
in prices of products in Germany, the following commands can be used

5

Figure 3: Market simulation with cost, utility and product changes

6

Figure 4: SSNIP test, �rm pro�ts

7

Figure 5: Demand

generate newprice = 1.05*princ if country == 3

mergersim demand if country == 3 , price(newprice)

The generate command creates a new price variable with German prices �ve
percent higher. The mergersim demand command generates the table in Figure
5.

The code is in example2.do.

1.7 Demand speci�cation in mergersim2

Nesting in mergersim has been extended to three level nests.
Nest speci�c parameters.
The rather tedious derivation of shares, equation to be estimated and share

jacobian for three level nests are given in Appendix B.

1.7.1 PCAIDS demand

Epstein & Rubinfeld (2002) introduced a demand model that could be cali-
brated to a two speci�ed elasticities and market demand. The PCAIDS demand
speci�cation simply assumes that diversion to other brands is in proportion to
the market shares of that brand. In mergersim2 demand can be speci�ed as
PCAIDS, using the demand() option of mergersim init. The following code

8

Figure 6: Merger with PCAIDS demand

replicates the calculations of Epstein & Rubinfeld (2002, p 895). It is assumed
that there are three �rms each producing a single good, all with initial price
p = 1. Prices and value shares q are given by the following table:

�rm p q

1 1 0.2

2 1 0.3

3 1 0.5

Elasticities are given by . The following code generates the dataset and
evaluates a merger between �rms 1 and 2.

matrix data = (1, 1, 0.2 \ 2, 1, 0.3 \ 3, 1, 0.5)

matrix colnames data = firm p q

svmat data , names(col)

mergersim init, demand(pcaids) elasticities(-1 -3) price(p) quantity(q) firm(firm)

mergersim simulate , buyer(1) seller(2)

The results are shown in Figure 6.

1.8 Elasticities

The new version of mergersim can calculate elasticities for price increases within
and between groups as speci�ed by a grouping variable in the dataset. The seg-
ment variable in the example cars1 dataset for example contains information on

9

Figure 7: Calculated group elasticities

the car segment of each car brand. To see how percentage changes for all prod-
ucts in one segment a�ect demand in di�erent car segments, the groupelasticities
option can be used as shown below.2

mergersim market if year == 1998 & country == 3 , ///

groupelasticities(segment)

The resulting output of group elasticities by car segment for Germany in 1998
is shown in Figure 7.

The elasticity matrix is saved in the r(groupelasticities) matrix in the output
returned by mergersim market. Product level elasticites are saved in the r(elas)
matrix. The code used can be found in example2.do.

1.8.1 Calibration from elasticities

An alternative to estimating the nested logit parameters α and σi is calibration
- to explicity specify them. In mergersim market the following code is used.

mergersim market if year == 1998 & country == 3, elasticities(-5.5 0.4 0.03)

For a two level nested logit demand model as above, three elasticities are spec-
i�ed:

1. the average own price elasticity

2. the average cross price elasticity with respect to another product in the
same subgroup

3. the average cross price elasticity with respect to another product in the
same group

Note that as the elasticities depend on market shares, the α and σi that corre-
spond to a given set of elasticities will vary by market. See Appendix C for a
derivation. For this reason calibration from elasticity requires the speci�ca-
tion of a single market, in the example above Germany (country 3) in 1998.

2In the syntax of Stata, /// at the end of a line indicates that the command continues on
the next line.

10

1.9 Estout support

The estout package provides a simple way of creating tables of results.3 By
specifying the option estout([name]) in mergersim init, results of estima-
tion, market analysis and merger simulation are stored. To present tables of
stored results, the estout can be used as indicated by the table.

Description estout command

Display all estimates estout

Display estimates starting with C estout C*

Display price changes estout , cells(price_ch)

Display elasticities estout , cells(elasticities)

2 Merger simulation and uncertainty

In this section we will illustrate how to obtain con�dence intervals on a merger
simulation using a parametric bootstrap. In order to do this, a little more knowl-
edge of Stata programming is required. Speci�cally, matrices, local macros,
temporary �les, and a programming loop (forwhile) are used. See the Stata
Users Guide for more information on these topics.

After initializing and estimating, mergersim market is invoked to create ma-
trices of the estimate (M_demand_b) and variance-covariance matrix (M_demand_V)
for the three parameters that will be randomly sampled: α, σ1 and σ2.

mergersim init, nests(segment domestic) price(price) ///

quantity(qu) marketsize(MSIZE) firm(firm)

xtreg M_ls price M_lsjh M_lshg horsepower fuel width height domestic year country2-country5, fe

mergersim market

Now two temporary �les are created, one with the market to be studied, the
other an empty dataset to which each simulation will be appended.

keep if year == 1998 & country == 3

tempfile market bootstrap

save `market'

drop if 1 // Save empty dataset

save `bootstrap' , replace

A matrix params is created with ndraws random draws (here set to 100) using
the matrices created by mergersim market. Setting a seed for the pseudo random
number generator ensures that the same draws are used, enabling reproduction
of the calculations.

local ndraws 100

set seed 1

drawnorm alpha sigma1 sigma2, n(`ndraws') means(M_demand_b) cov(M_demand_V) clear

mkmat alpha sigma1 sigma2, matrix(params)

3To install the estout package, use the command ssc install estout.

11

Using the ndraws random draws, merger simulations for each are appended to
the temporary dataset bootstrap.

forvalues i = 1/`ndraws' {

use `market' , clear

local alpha = params[`i',1]

local sigma1 = params[`i',2]

local sigma2 = params[`i',3]

quietly mergersim init, nests(segment domestic) price(price) quantity(qu) ///

marketsize(MSIZE) firm(firm) alpha(`alpha') sigmas(`sigma1' `sigma2')

quietly mergersim simulate , seller(15) buyer(26)

quietly append using `bootstrap'

quietly save `bootstrap' , replace

}

tabstat M_price_ch , by(firm) statistics(mean sd) format(%9.3f)

3 Joint ownership in merger simulation

In this section we discuss how one can handle issues of joint ownership in merg-
ersim2. Market analysis or mergers where there is joint ownership complicates
the analysis. We will discuss brie�y how joint ownership can be handled con-
ceptually, and then present the implementation in mergersim2.

Let pm, qm and cm denote vectors of prices, quantities and marginal costs
per product. Calculation of costs and equilibrium prices in a market are based
on the �rst order condition of pro�t maximization.

Rm �Dm (pm − cm) + qm = 0

The matrix Dm is the demand jacobian where element (i, j) is the derivative of
the demand for good i with respect to price j. The ownership matrix Rm in
market m identi�es which products belong to the same �rm, with element (i, j)
set to 1 if they have the same owner, otherwise zero.

The ownership matrix R is created from the �rm variable speci�ed by the
user by �rst creation of a binary product matrix F , with rows for each product
and columns for each �rm, with a 1 if the �rm owns the product. For example,
with 3 products and 2 �rms the matrix

Fm =

 1 0
0 1
0 1


indicates that �rm 2 owns two goods. We then have

Rm = FmF
′
m

12

Assume that the market has three �rms, with a product each. If �rm is owned
by �rm 1 and 2 with sharesα and 1 − α respectively. Partial ownership can
be incorporated by letting the ownership materix depend on product ownership
Fm and �rm ownership S matrices:

Rm = FmSF
′
m

In the simple setting with three �rms each owning one product, we have Rm = S.
The element (i, j) of S indicates to what extent �rm i includes the e�ect of pro�ts
of �rm j in its pro�t maximization.

For an owning �rm, if pro�ts of the subsiduary are split according to own-
ership shares, the revenues of the subsiduary should enter the maximization
problem with the same weight α. With joint ownership, how pro�ts are maxi-
mized in the jointly owned �rm matters. Three di�erent assumptions come to
mind.

• With total pro�t maximization, prices of the jointly owned �rm are set to
maximize the total pro�t, the idea being that with an optimal contract
between owners such pricing would be chosen. (Whether such contracting
is possible or legal is another question.)

ST =

 1 0 a
0 1 1 − a
1 1 1


• With weighted pro�t maximization the subsiduary maximizes the weighted
sum of the pro�t functions of itself and the owners , with weights corre-
sponding to ownership shares.

SW =

 1 0 a
0 1 1 − a
a 1 − a 1


With own pro�t maximization the subsiduary maximizes its own pro�ts.

SO =

 1 0 a
0 1 1 − a
0 0 1


In the following, we will focus on weighted pro�t maximization.

With more complicated ownership structures than in the example above,
creating an ownership matrix becomes more complicated. Consider the owner-
ship shares of 4 goods and 3 �rms. Product 3 is jointly owned by 1 and 2, and
product 4 is owned by 1 and 3 as in the following table

1 2 3

1 1

2 1

3 a 1-a

4 b 1-b

13

The question is whether indirect ownership should be taken into account.
With weighted pro�t maximization, de�ning the ownership matrix as above, we
obtain

SW =


1 0 a b
0 1 1 − a 0
a 1 − a 1 1 − b
b 0 1 − b 1


Here the e�ect that �rm 4 has on �rm 2 is ignored by �rm 4, as the ownership
is indirect. In order for this e�ect to be taken into account, the corresponding
cell has to be changed:

SW ′ =


1 0 a b
0 1 1 − a 0
a 1 − a 1 1 − b
b (1− a) (1− b) 1 − b 1


3.1 Generation of ownership in mergersim

In order to implement joint ownership in a simple way, it is advantageous to
distinguish between products ownership by �rms and the ownership of other
�rms by �rms. The p× f product matrix F de�nes which �rm (or subsiduary)
that produces the product, created from the �rm categorical variable in the
dataset. The r × r �rm matrix S de�nes joint ownership.

In mergersim 1 the �rm ownership matrix S is implicitly an identity matrix,
unless the conduct option is speci�ed. In this case, the o�-diagonal elements of
S are set to the value θ that the user speci�es.

There are two methods of creating joint ownership in mergersim 2. The
ownership matrix can be created by the user as a Stata matrix with the name
M_ownership. If a matrix with this name exists it will be automatically used
by mergersim. Alternatively mergersim can assist in the creation of the ma-
trix. Joint ownership is speci�ed in a Stata dataset with three variables in the
following order.

Firm Owner Share

3 1 α
3 2 1 − α

Several joint ownerships can be speci�ed in the dataset. Mergersim replaces
the o�-diagonal zero elements(3, 1) and (1, 3) in the identity matrix with α and
(3, 2) and (2, 3) with 1 − α. Ownership is speci�ed in mergersim market with
the option ownership([name of dataset]).

If the structure of joint ownership changes over time, this can be also be
handled. Assume that the ownership shares of �rm 3 changes to β and 1 − β
at some time t in the data. Let a new owner 4 replace �rm 3 as owner in all
observations after t and use the ownership dataset

14

Firm Owner Share

3 1 α
3 2 1 − α
4 1 β
4 2 1 − β

Such a new �rm can also be used to model a merger from partial ownership
to complete ownership by setting β = 1 above, letting �rm 4 aquire �rm 3 in
the merger.

A conduct parameter can be speci�ed in mergersim to capture the degree
of competition between �rms. Specifying conduct θ replaces all o�-diagonal
elements in the ownership matrix S by θ. The ownership dataset can also be
used to specify di�erent conduct parameters, rather than joint ownership. To
see what happens if �rm 1 and 2 take the pro�t of the other �rm into account
by θ, we use the following ownership dataset:

Firm Owner Share

2 1 θ

The e�ect of this speci�cation is that only elements(1, 2) and (2, 1) of S are set
to θ.

The ownership matrix is used to specify how �rms take the pro�ts of other
�rms into account and the product ownership is used to specify which �rm
owns what. Assumptions on conduct thus a�ect the ownership matrix, with the
possibility of pre- and post merger assumptions.

• Note that the implementation of joint ownership in mergersim2 has not
yet been completed.

15

Appendix

In the appendix, calculations of muliproduct UPP, shares and share Jacobian
for three level nests and calibration from elasticities are presented.

A Multiproduct UPP

Let ∆q (p) be the demand jacobian for all products of all �rms, D11 be the
submatrix of ∆q (p) of elements where i and j are products of �rm 1 and D12

be the submatrix of terms where i is a product of �rm 1 and j is a product of
�rm 2. (As all derivatives will be at pre-merger prices, the dependence of these
submatrices on p is surpressed.) The FOC for the set of products of �rm 1 can
be expressed as

D11(p1 − c1) + q1 = 0 (1)

As above, subscripts indicate sub-vectors of the products that belong to �rm
1 prior to the merger. If �rm 1 buys �rm 2, these equations are modi�ed as
follows

D11(p1 − (1 − e1)c1) +D12(p2 − c2) + q1 (2)

At pre-merger prices this expression will not be zero. Subtracting, we can de�ne
the vector:

UPP12 = −e1c1 −D−111 D12(p2 − c2)

The invertability of D11 is guaranteed by the existence of a unique pre-merger
equilibrium. The j × k matrix

Div12 = −D−111 D12

are the diversion ratios for each product j of �rm 1 and k of �rm 2.
We can, along the lines of Schmalensee also de�ne

UPP ∗12 = −e1c1 −D−111 D12(p2 − (1 − e2) c2)

A.1 Interpretation

Let be the optimal price conditional on p2 and other �rms

D11(p1 + ∆p1 − (1 − e1)c1) +D12(p2 − c2) + q1 = 0

Substituting q1 from (1), we get

D11(∆p1 + e1c1) +D12(p2 − c2) = 0

Thus
UPP12 = ∆p1

UPP12 is thus the optimal price change for the products of �rm 1, given that
prices of other products including the products formerly owned by �rm 2 are
unchanged. The measure is the absolute price change rather than the relative
change measured in merger simulations, as the focus is on the direction of change
rather than the magnitude.

16

A.2 UPP and �rst iteration of �xed point

The �xed point algorithm solves the following equation for prices post-merger:(
D11 D12

D21 D22

)(
p1 − c1
p2 − c2

)
+

(
q1
q2

)
= 0

The FOC for other products are solved seperately as ownership creates a block
diagonal matrix D.

Block inverting the matrix D, the prices of the pre-merger products in the
�rst iteration of the �xed point algorithm is:

p1 = (1−e1)c1−
(
D11 −D12D

−1
22 D21

)−1
q1−D−111 D12

(
−D22 +D21D

−1
11 D12

)−1
q2

The di�erence between UPP and the �rst iteration for �rm 1 is that for the new
products, UPP takes the prices as given by the pre-merger level, whereas the
�rst stage �xed point calculates these as being optimal given the prices of other
�rms.

The di�erence between these expressions are given by the second terms
within the two parenthesises with inverses (D12D

−1
22 D21 and D21D

−1
11 D12). This

can be seen as follows. Setting these to zero and using the fact that the pre-
merger FOC for products 2 can be written as

D22 (p2 − c2) = −q2
we get the UPP equation above.

A.3 Average UPP

Assuming that �rm 1 has the same marginal costs for all products c1 = c̄1i1,
and �rm 2 has the same markup m̄2i2 = p2 − c2 on all products, whereik is a
column vector of ones corresponding to the number of products of �rm k, we
can de�ne the vector:

− (i′1D11i1)

J1
c̄1e1 −

(i′1D12i2)

J1
m̄2

where J1 is the number of products of �rm 1. Under these assumptions we can
get an average UPP that depends on a scalar diversion ratio.

AUPP12 = −c̄1e1 −
(i′1D12i2)

(i′1D11i1)
m̄2 = −c̄1e1 −

(i′1D12i2)

(i′1D11i1)
m̄2

We can then de�ne the diversion ratio as

Div12 = − i
′
1D12i2
i′1D11i1

Both UPP12 and AUPP12 correspond to the single market UPP12 when both
�rms 1 and 2 are single product �rms. Note that

Div12 = − i
′
1∆q (p) i2
i′1∆q (p) i1

if vectors ik are rede�ned as containing 1 if product j belongs to k, otherwise 0.

17

B Nested logit derivations

This section presents derivations for share jacobians and log share values used
in estimation,. for the two- and three-level nested logit demand speci�cation.

Ij = exp (δj/ (1 − σh))

Ih(j) =
∑
k∈Hj

Ik

Ig(j) =
∑
h∈Gj

(
I1−σhh(j)

) 1
1−σg

I =
∑
g∈G

I1−σgg

Shares in a two level nested logit are given by:

sj =
exp (δj/ (1 − σh))

Ih(j)

(
I1−σhh(j)

) 1
1−σg

Ig(j)

I
1−σg
g(j)

1 + I
(3)

Note that considering an outer σf = 0 makes the equation symmetric in each
fraction above. Summing products of the subgroup h(j) we get the share of the
subgroup:

sh(j) =

(
I1−σhh(j)

) 1
1−σg

Ig(j)

I
1−σg
g(j)

1 + I
(4)

Similarly

sg(j) =
I
1−σg
g(j)

1 + I
(5)

Thus
sj =

sj
sh(j)

sh(j)

sg(j)
sg(j) = sjhshgsg

By dividing the previous equations we obtain the share of subgroup h(j) of the
group g(j) that it belongs to:

shg =

(
I1−σhh(j)

) 1
1−σg

Ig(j)

B.1 Two level nested Jacobian

dIh(j)

dδj
=

1

1 − σh
Ij

18

dIh(j)

dδj
I−1h(j) =

1

1 − σh
sjh

Ig(j) =
∑
h∈Gj

(
Ih(j)

) 1−σh
1−σg

dIg(j)

dδj
=

1 − σh
1 − σg

(
Ih(j)

) 1−σh
1−σg I−1h(j)

dIh(j)

dδj
=

1

1 − σg
sjh
(
Ih(j)

) 1−σh
1−σg

dIg(j)

dδj
I−1g(j) =

1

1 − σg
sjhshg =

1

1 − σg
sjg

from the de�nition of shg above.
To reduce the number of terms in taking derivatives we rewrite

sj = exp (δj/ (1 − σh))

[(
I1−σhh(j)

)(1
1−σg −

1
1−σh

)] [
I
−σg
g(j)

] 1

1 + I

Let Fi (δj) denote each of the four terms in this product. Then

∂F1 (δj)

∂δj
=

1

1 − σh
F1

∂F2 (δj)

∂δj
=
∂Ih(j)

∂δj
(1 − σh)

(
1

1 − σg
− 1

1 − σh

)
I−1h(j)F2

Using the derivative
dIh(j)
dδj

I−1h(j) above:

∂F2 (δj)

∂δj
= sjh

(
1

1 − σg
− 1

1 − σh

)
F2

Using the derivative
dIg(j)
dδj

I−1g(j) above:

∂F3 (δj)

∂δj
= −σg

∂Ig(j)

∂δj
I−1g(j)F3 =

−σg
1 − σg

sjgF3

∂F4 (δj)

∂δj
= − (1 − σg) I

1−σg
g(j) I−1g(j)

∂Ig(j)

∂δj
F 2
4 = −sjg

(
I
1−σg
g(j) F4

)
F4 = −sjF4

The share derivative is given by the product rule:

∂sj
∂δj

=

4∑
i=1

∂Fi (δj)

∂δj

∏
k 6=i

Fk


As each ∂Fi

∂δj
contains Fi, we can factor out the product sj , and obtain

∂sj
∂δj

=

(
1

1 − σh
−
(

1

1 − σh
− 1

1 − σg

)
sh −

σg
1 − σg

sjg − sj

)
sj

19

B.2 Three level nest jacobian

To reduce the number of terms in taking derivatives we rewrite

sj = exp (δj/ (1 − σh))

[(
Ih(j)

) 1−σh
1−σg −1

] [(
Ig(j)

) 1−σg
1−σf

−1
] [
I
−σf
f(j)

] 1

1 + I

Let Fi (δj) denote each of the �ve terms in this product. Then F1 and F2 are
de�ned as above with

∂F1 (δj)

∂δj
=

1

1 − σh
F1

∂F2 (δj)

∂δj
= sjh

(
1

1 − σg
− 1

1 − σh

)
F2

We can calculate the derivative
dIm(j)

dδj
I−1m(j) as above:

If(j) =
∑
h∈Fj

(
Ig(j)

) 1−σg
1−σf

dIf(j)

dδj
=

1 − σg
1 − σf

(
Ig(j)

) 1−σg
1−σf I−1g(j)

dIg(j)

dδj
=

1

1 − σf
sjg
(
Ig(j)

) 1−σg
1−σf

dIf(j)

dδj
I−1f(j) =

1

1 − σf
sjf

∂F2 (δj)

∂δj
=
∂Ih(j)

∂δj
(1 − σh)

(
1

1 − σg
− 1

1 − σh

)
I−1h(j)F2

∂F2 (δj)

∂δj
= sjh

(
1

1 − σg
− 1

1 − σh

)
F2

∂F3 (δj)

∂δj
= sjg

(
1

1 − σf
− 1

1 − σg

)
F3

Changing index

∂F4 (δj)

∂δj
= −σf

∂If(j)

∂δj
I−1f(j)F4 =

−σf
1 − σf

sjfF4

∂F5 (δj)

∂δj
= − (1 − σf) I

1−σf
f(j) I−1f(j)

∂If(j)

∂δj
F 2
5 = −sjf

(
I
1−σf
f(j) F5

)
F5 = −sjF5

The share derivative is given by the product rule:

∂sj
∂δj

=

5∑
i=1

∂Fi (δj)

∂δj

∏
k 6=i

Fk


Insering the de�nitions of Fi and

∂Fi(δj)
∂δj

and simplifying, we obtain

∂sj
∂δj

=

(
1

1 − σh
−
(

1

1 − σh
− 1

1 − σg

)
sjh −

(
1

1 − σg
− 1

1 − σf

)
sjg −

σf
1 − σf

sjf − sj

)
sj

(6)
(As each ∂Fi

∂δj
contains Fi, we can factor out the product sj =

∏
k Fk.)

20

B.3 Log-share Parameters Used in Estimation

To obtain the three level linear equation to estimate, start from the share equa-
tion (3)

sj =
exp (δj/ (1 − σh))

Ih(j)

(
I1−σhh(j)

) 1
1−σg

Ig(j)

I
1−σg
g(j)

1 + I

above

sj/s0 =
exp (δj/ (1 − σh))

Ih(j)

(
I1−σhh(j)

) 1
1−σg

Ig(j)
I
1−σg
g(j)

Using

exp (δj/ (1 − σh)) = exp (δj) exp

(
δj

σh
1 − σh

)
we get

sj/s0 = exp (δj) exp

(
δj

σh
1 − σh

)(
Ih(j)

) 1−σh
1−σg −1 I

−σg
g(j)

Multiplying by I−σhh(j) I
σh
h(j)

sj/s0 = exp (δj)

[
exp

(
δj

1 − σh

)
I−1h(j)

]σh
Iσhh(j)

(
Ih(j)

) 1−σh
1−σg −1 I

−σg
g(j)

sj/s0 = exp (δj)

[
exp

(
δj

1 − σh

)
I−1h(j)

]σh [(
I1−σhh(j)

) 1
1−σg

I−1g(j)

]σg
Substituting the de�nitions

sj/s0 = exp (δj) s
σh
jhs

σg
hg

The population equation to be estimated is given by

log (sj/s0) = δj + σh log sjh + σg log shg

B.3.1 Three level nests

In the three level nestm the corresponding equation to (3) is given by

sj = exp (δj/ (1 − σh))

[(
Ih(j)

) 1−σh
1−σg −1

] [(
Ig(j)

) 1−σg
1−σf

−1
] [
I
−σf
f(j)

] 1

1 + I

sj =
exp (δj/ (1 − σh))

Ih(j)

(
I1−σhh(j)

) 1
1−σg

Ig(j)

(
I
1−σg
g(j)

) 1
1−σf

If(j)

I
1−σf
f(j)

1 + I

sj/s0 = exp (δj) exp

(
δj

σh
1 − σh

)(
Ih(j)

) 1−σh
1−σg −1

(
Ig(j)

) 1−σg
1−σf

−1
I
−σf
f(j)

21

sj/s0 = exp (δj)

[
exp

(
δj

σh
1 − σh

)
I−σhh(j)

]
Iσhh(j)

(
Ih(j)

) 1−σh
1−σg −1

(
Ig(j)

) 1−σg
1−σf

−1
I
−σf
f(j)

sj/s0 = exp (δj)

[
exp

(
δj

1

1 − σh

)
I−1h(j)

]σh [(
I1−σhh(j)

) 1
1−σg

I−1g(j)

]σg [(
I
1−σg
g(j)

) 1
1−σf I−1f(j)

]σf
sj/s0 = exp (δj) s

σh
jhs

σg
hgs

σf
gf

Thus the equation to be estimatedis given by

log (sj/s0) = δj + σh log sjh + σg log shg + σf log sgf

C Elasticities

This section contains the analysis of nested logit demand and elasticities. To
calibrate nested logit model from elasticities, the functional dependence of pa-
rameters α and σi on these elasticities have to be derived. Expressions for group
elasticites, used in mergersim market are also presented. Note that calibration
from elasticites in the three level nested logit are not supported yet.

C.1 Calibration from elasticities

With a one level nested logit, elasticities calculated from quantities are given
by:

ejj = α

(
1

1 − σ
− σ

(1 − σ)

qj
qgj

− qj
m1

)
pj

ejk = −α
(

σ

(1 − σ)

qj
qgj

+
qj
m1

)
pj

Let

z̄ =
1

J

∑
j

pjqj
qg(j)

=
1

J

∑
g∈G

v̄g
q̄g

Unweighted average elasticities are then

ējj = α

(
1

1 − σ
p̄− σ

(1 − σ)
z̄ − 1

m1
v̄

)

ējk = −α
(

σ

1 − σ
z̄ +

1

m1
v̄

)
De�ning p̄, A and B as the three sums above

C1 =
α

1 − σ
=
ējj − ējk

p̄

and thus
ējk = −σC1z̄ − (1 − σ)C1z̄

22

ējk + C1v̄ = σC1 (v̄ − z̄)

The one level nested logit parameters can thus be expressed in terms of shares

σ =
ējk/C1 + v̄

v̄ − z̄
=

(
1 − p̄

v̄

ējk
ējk − ējj

)
v̄

v̄ − z̄

α = (1 − σ)C1 =
C1z̄ − ējk
v̄ − z̄

−α =
ējk
v̄ − z̄

(
1 +

ējj − ējk
ējk

z̄

p̄

)
C.1.1 Two level nests

Basing calculations on shares in the two level unit demand logit, we have:

ējj = α

(
1

1 − σ1
p̄−

(
1

1 − σ1
− 1

1 − σ2

)
p · shg/J − σ2

1 − σ2
p · sg/J − p · s/J

)

ējk = −α
((

1

1 − σ1
− 1

1 − σ2

)
p · shg/J +

σ2
1 − σ2

p · sg/J + p · s/J
)

ējl = −α
(

σ2
1 − σ2

p · shg/J + p · s/J
)

Let Zg = p · sg/J , Zhg = p · shg/J , and Zj = p · s/J .

ējj = α

(
1

1 − σ1
p̄−

(
1

1 − σ1
− 1

1 − σ2

)
Zhg −

σ2
1 − σ2

Zg − Zj

)
We now have

C1 =
α

1 − σ1
=
ējj − ējk

p̄

and

ējl − ējk = α

(
1

1 − σ1
− 1

1 − σ2

)
Zhg

ējl − ējk =

(
C1 −

α

1 − σ2

)
Zhg

C2 =
α

1 − σ2
= C1 −

ējl − ējk
Zhg

ējl = −σ2
α

1 − σ2
Zg −

α

1 − σ2
(1 − σ2)Zj

ējl = −σ2C2Zg − C2 (1 − σ2)Zj

ējl/C2 + Zj = −σ2Zgg + σ2Zj

Thus the solution is

σ2 =
ējl/C2 − Zj
Zj − Zg

23

α = (1 − σ2)C2

α = (1 − σ1)C1 = (1 − σ2)C2

σ1 = 1 − (1 − σ2)C2

C1

C.1.2 CES

For CES demand, the C1 and Z∗ parameters above have to be modi�ed as
follows

ējj = α

(
1

1 − σ1
−
(

1

1 − σ1
− 1

1 − σ2

)
shg/J − σ2

1 − σ2
sg/J − s/J

)
− 1

In this case
C1 = ējj − ējk + 1 =

α

1 − σ

Also Zjh =
∑
j sjh/J , Zhg =

∑
j shg/J , and Zj =

∑
j sj/J . In the formulas

above p̄ is replaced with 1.

C.2 Group elasticities

Group elasticities are calculated based on a categorical variable that de�nes
which group a product belongs to. The variable is transformed to a g×n group
membership matrix G, where element (i, j) is 1 if product j is in group i. The
matrix of product elasticities can be expressed in terms of the share Jacobian
D as:

E = p̂D′ŝ−1

where the -̂operator is used to indicate diagonalizing a vector. Similarly, the
group elasticities are given by

Eg = Gp̂D′G′Ĝs
−1

24

